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ON THE FIRST OCCURRENCE 
OF CERTAIN PATTERNS OF 

QUADRATIC RESIDUES AND NON-RESIDUES 

BY 

RICHARD H. HUDSON* 

ABSTRACT 

Effective upper bounds are obtained for the first occurrence of certain mixed 
patterns of quadratic residues and non-residues using the character sum 
estimates of D. A. Burgess and a proof of a conjecture of E. Lehmer. 

1. Introduction and summary 

A r o u n d  1939 Issai Schur proved  the following interesting theorem.  

THEOREM 1. Let f be a totally multiplicative [unction (that is f (rs)  = [(r)  [ (s )  

for every r, s ~ Z +) which takes on only the values +__ 1. I f  there are no positive 
integers a, a + 1, a + 2 with 

(1.1) f ( a )  = f ( a  + 1) = f ( a  + 2 )  = + 1, 

then f must be one of the two [unctions defined for each positive integer k and n by 

(1.2) f , (n )  = (n/3),  (n, 3) = 1, / , (3kn) = f , (n) ,  

(1.3) fz(n) = (n/3),  (n, 3) = 1, f2(3kn) = ( -  1)kf2(n). 

The  proof  of T h e o r e m  1 was p repared  for  publicat ion by the first author ,  

appear ing in [15]. 

Let  ri (p) and n, (p) denote  respect ively the least positive quadrat ic  residue and 

non-res idue such that ri, ri + 1, r~ + 2 , . - . , r ~  + i - 1 are all quadrat ic  residues and 

n~, n~ + 1, n~ + 2 , . . . ,  n~ + i - 1 are all quadrat ic  non-residues of p. An  upper  

bound for n2 has been given by Elliott  [6], improving results in [3, th. 3] and in [5, 

p. 52]. Using T h e o r e m  1, bounds for  r3 have been  given by the first au thor  [8], 
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[9]. Upper bounds for n3 or for r~ better than those which are immediate 

consequences of the work of Weil [16] (see, in connection, Gelfond and Linnik 

[7, p. 198]) appear quite difficult to obtain. In w of this paper we show how 

proofs of conjectures of Emma Lehmer [12], [13] together with the estimates of 

Burgess [4] lead to non-trivial upper bounds for certain mixed patterns of four 

consecutive integers only three of which are required to be quadratic residues. 

In particular, let r4.~(p) denote the smallest positive integer such that 

. '  ' -3--- '  ' -7--)--  +'' 
and let r4,2(p) denote the smallest positive integer such that 

(r42+2 ( r 4 , + 3 ]  . 

In w (see Theorem 2) we use Weil's estimates to establish the existence of 

r4., (p) for p > 11, r4,2(p) for p > 7, and r4(p) for p > 53. This generalizes a result 

of Jacobsthal [11] for ra(p), p ~ 3  (mod 4). In w we prove the following 

conjecture of Emma Lehmer [12] which has been reformulated to serve our 

needs in w 

THEOREM 3. Let f be a totally multiplicative [unction taking on only the values 

+_- 1, with/(2) = - 1, for which there exists a least positive integer q # 0 (mod 5) 
with f ( q ) #  (q/5). Then there is [unction g(q) and integers a, a +2, a +3 with 

1 <= a <=g(q) for which f ( a ) = f ( a  + 2 ) = f ( a  + 3 ) =  + 1. 

In Theorem 3, any function g depending solely on q suffices to establish 

Lehmer's conjecture. For our purposes, since our bounds depend directly on the 

size of g(q), it is desirable to find as small a value as possible for g(q) even 

though this lengthens the proof of Theorem 3 markedly. By showing that g(q) 
can be taken (at least) as small as 12q in Theorem 3, and using an analogous 

theorem obtained in [10] together with Theorem 2 of this paper and the 

character sum estimates of Burgess [4], we derive in w the following upper 
bounds for r4.1(p) and r4.2(p). 

THEOREM 4. 

(1.4) 

THEOREM 5. 

(1.5) 

Let p be a prime >_2 13. Then 

r4.1(p) < 203.602p TM logp + 51. 

Let p be a prime -= _+ 3 (mod 8) => 11, then 

r4.2(p) < 174.516p TM logp + 48. 
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Unfortunately, we are unable to obtain a similar result for r4,2(p) when 
p = - 1 (mod8) due to our inability to obtain a result analogous to Theorem 3 
when ]:(2) = + 1. Lehmer's conjecture, with f(2) = + 1, is identical to Theorem 3 
except that 5, when it appears, is replaced by 7. Any proof of this conjecture 
would be of interest in itself. 

2. Existence of r4(p), r4,dp), and r4,2(p) for p > 53 

The exact number of quadruples of consecutive quadratic residues of a prime 
p has been known for 75 years, see, e.g., [11], if p is a prime -- 3 (rood 4). From 
this result it follows that r4(p) exists if p is any prime-= 3 (rood 4) _-> 19. 

In what follows we assume only that p is a p r ime>3  and, for brevity, 
throughout this section we write r for r4(p). 

There exists an integer r, 1 <= r <= p - 4, with THEOREM 2. 

(2.1) 

for every prime p > 53. 

PROOF. If ~4( 
S = ~  1 

r = l  

( p ) = ( r +  1 ) = ( r + 2 / = ( r + 3 ) =  
\ P \ P / \ - -p - - /  +1 ,  

r + l  ( l + ( r + 2 / ) ( l + I r + 3  , 3 - ) )  >~ 

then there clearly exists an integer r satisfying (2.1). 
Expanding (2.2) we have 

S = p --4+ ~a (P ) -F P,~ (r + l ) q- P,~14 (r -t- 2 ) -)- Pf~l 4 (r q- 3 \ P / \ p / \ r /  P,~I (r(r + l) p / 

+P~ (r(r+2)l+ ~ /r(r+3)l+ ~ ( ( r + l ) ( r + 2 ) ) + ~ ( ( r + l ) ( r + 3 ) )  

,=, \ P / \ P / P P 

(2.3) 

r = |  

r = l  

For brevity we denote the 15 sums in (2.3) by 

Sl,, i = 1 , ' " , 4 ,  S2i, i = 1,'",6, S3i, 

( ( r + 2 ) ( r  + 4 ) ) +  ~ (r(r+l)(r + 2 ) ) +  ~ (r(r+l)(r +3) )  

P P P 

(r r+ (r r+ l> r+ 3>) 
p p ,=1\ p 

i = 1 , " ' , 4 ,  and $41. 
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It is easy to see that IS,  I =<3 for i = 1 , . . . ,  4 as, e.g., 

,s,,, I (~ 
=[-(_+1)-(_+1)-(___1)1_-<3. 

Now, as 

(2.4) p-l~ (ax2+b_x +c)=t (p-1)(p) ifplb2-4ac 
r=0\ p (p )  ifpXb2_4ac p~'a 

summing over primes p X a, we have for k ~ l that 

(2.5) ~, r+k)(r+l = - 1 .  
r=O p 

It follows that IS2,1 =<3 for i = 1,-. .  ,6. 

Now, A. Weil [16] (see, e.g., [2]) has shown that 

IP~o ((r+a)(r+b)(r+c))]<=2p m fora~b,b~c,c~a. 
P 

It follows that [ $3. I < 2pl/2 + 1 for i = 1,. �9 4. Moreover, as 

,S41, = I ~ 4 ( r(r + l)(r; 2)(r + 3) ) l = I ~o ( r(r + l)(r; 2)(r + 3) ) l <=3pl/2 

we have, putting together the above, 

tS - ( p  -4)1 =< 4"3 + 6"3 + 4(2p1'2 + 1)+3p 1/2 = 11pl/2 + 34. 

It is easily checked that 

S => p - 4 - ( l l p  m + 34) = p - l l p  1/2 - 38 > 0 

for every prime p => 191 and computer data for 53 < p < 191 completes the proof 
of Theorem 2. 

COROLLARY. r4A(p) exists if p >= 13 and r,,E(p) exists if p >-_ 11. 

PROOF. The above argument clearly establishes the existence of ra,l(p) and 

r4.dp) if p _-> 191. Computer data establishes the existence of &,l(p) if p => 13 and 
of r4,dp) if p => 11. 
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3. A Proof of Theorem 3. 

We now prove Theorem 3 in the stronger form that g(q)<= 12q. As a necessary 

preliminary we show that q > 7. 

Case 0a. If q = 3, t h e n / ( 1 )  = f(3) =/(4)---  + 1. 

Case 0b. If q -- 7, then f(4) = f(6) = f(7) = + 1. 

Henceforth,  we assume that q > 11 and we adopt the following notation. 

When t > 1 is not required in the proof of a case we simply write aq + b. When 

the value of f((aq + b)/t) is + 1 or - 1 according to one of the following reasons, 

we give as the reason for its value one of the letters A, B, or C where these 

letters have the following meanings: 

A. f (aq)= - f (a ) (q /5)  in view of the definition of q in Theorem 3. 

B. f((aq + b)/t) = + 1 as (aq + b)/lt - 1,2, or 4 (mod 7) < q. 

C. f((aq + b)/t)= - 1  since f((aq + b -3 t ) / t )=f ( (aq  + b -2t)/ t) .  

When B is the reason given in the following proof, a value for l (not 

necessarily the largest) is given immediately after the letter B. The last three 

steps in each of the cases yield the desired integers a, a + 2, a + 3 specified in 

Theorem 3. 

The first column in the proof of each case gives the expression (aq + b)/t, the 

second column the value of f((aq + b)/t), and the third column the reason for 

the assigned value in the second column. We first consider the cases where q ~ 1 

(mod 5). 

Case la. q ~ 2 (mod 5) Case lb. q -= 3 (mod 5) 
Case 2. q ---4 (mod 5)-= 

1 (mod 3) 

q +1 A q +1 A 2q +1 A 
q - 1  +1 B1 q + l  +1 B2 2 q + l  +1 B3 
q - 3  +1 B1 q - 2  +1 B1 2 q - 2  +1 B3 

Case 3. q ~= 4 (mod 5) 
2 (rood 3) -= 3 (rood 4) 

Case 4. q -= 29 (rood 180) --- 4 (mod 5) --- 2 
(mod 9) --- 1 (rood 4) 

3q + 1 A 7q + 1 A 
3q - 1 + 1 B4 7q + 1 + 1 B12 
3q - 3 + 1 B6 7q - 2 - 1 C 

(7q - 2)/3 + 1 f(3) = - 1 
(7q - 5)/3 + 1 B9 
(7q - 11)/3 + 1 B12 
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Case 5. q ---= 149 (rood 180)--- 4 (mod 5) ~ 5 

(mod 9) -= 1 (mod 4) 

7q + 1 A 

7q + 1 + 1 B18 

7q - 2  - 1 C 

(7q - 2)/3 + 1 / (3 )  = - 1 

(7q - 11)/3 + 1 B'12 

(7q - 5)/3 - 1 C 

(7q - 5)/6 + 1 / (2 )  = - 1 

(7q + 1)/6 + 1 B18 

(7q - 17)/6 + 1 B18 

Case 6. q ~-4 (mod 5) -=8  (rood 

9) =- 1 (rood 4) 

7q + 1 A 

7q + 1 + 1 B12 

7q - 1 + 1 B9 

The rest of the proof (the cases for q = 1 (mod 5)) is more involved and we 

adopt the following abbreviation in the third column: D5, D10, or D15 means 

that [((aq +b)/t)= +1  because (aq +b)/t = 5 ,  10, or 15 (5k + a )  and /(5), 

/(10), or / (15) ,  respectively, is equal to (a/5), a = 1, 2, 3, or 4; 5k + a < q. 

Case 7. q - = 9 1 ,  211, 331 (mod 360)~-1 (mod 

3) ~- 3 (mod 8) 

Case 8. q - = 3 1 ,  151, 271 (mod 360)---1 (mod 

3) =- 7 (mod 8) 

7q + 1 A 7q + 1 A 

7 q -  1 + 1 B12 7 q -  1 + 1 B8 

7q - 3  - 1 C 7q - 3  - 1 C 

(7q - 3)/2 + 1 f(2)  = - 1 (7q - 3)/2 + 1 [(2)  = - 1 

(7q - 5)/2 + 1 B (7q - 9)/2 + 1 B8 

(7q - 9)/2 - 1 C (7q - 5)/2 - 1 C 

(7q - 9)/4 + 1 f (2)  = - 1 (7q - 5)/4 + 1 / (2)  = - 1 
(7q - 13)/4 + 1 B8 (7q - 1)/4 + 1 B24 

(7q - 2 1 ) / 4  + 1 B8 (7q - 13)/4 + 1 B12 

Case 9. q ~ 4 1 , 1 3 1 , 2 2 1 , 3 1 1  (mod 360)--= 

5 (mod 9) 

2q + 1 A 

2q - 1 + 1 B9 

2q - 3  - 1 C 

4q - 6 + 1 f (2)  = - 1 

4q - 8 + 1 B4 

4q - 5  - 1 C 

(4q - 5)/3 + 1 f(3)  = - 1 
(4q - 2)/3 + 1 B6 

(4q - 11)/3 + 1 B9 

Case 10. q ~ 7 1 ,  161, 251, 341 (mod 

360) -=-- 8 (mod 9) 

2q + 1 A 

2q - 1 + 1 B3 

2q - 3  - 1 C 

4 q - 6  + 1 f(2)  = - 1 

4q - 5 + 1 B9 

4q - 8 + 1 B4 
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Case 11. q-=281 (rood 360)-= 2 (mod 9)-= 1 
(mod 8) 

7q + 1 A 
7q - 3 - 1 assumption 

(7q - 3)/2 + 1 [(2) = - 1 
(7q - 5 ) / 2  + 1 B18 
(7q - 9 ) / 2  - 1 C 

7 q - 9  +1 [ ( 2 ) = - 1  
7q - 11 + 1 BI2 
7 q - 8  - 1 C 

(7q - 8)/3 + 1 [(3) = - 1 
(Tq - 5)/3 + 1 BI8 
(7q - 14)/3 + 1 B9 
7q - 3 + ! contradiction 
7 q - 1  1 C 

(7q - 1)/2 + 1 [ ( 2 )  = - 1 

(7q + 1 )/2 + 1 B24 
(7q - 5)/2 + [ B18 

Case 12. q-= 101 (mod 360)-=2 (mod 
9) ~- 5 (mod 8) 

7q + 1 A 
7q - 3 + 1 B8 
7 q - 1  - 1  C 

(7q - 1)/2 + 1 /(2) = - 1 
(7q + 1)/2 + 1 B12 
(7q - 5)/2 + 1 B18 

Apart from q -= 11 (mod 180), the missing cases all have q = 1 (mod 60) and 

these are resolved in Cases 13-21. 

Case 13. q -= 1,301,601,121,421,721 (mod 900), 
f(5) = + 1; q -= 181,481,781,241,541,841 (mod 

900), [(5) = - 1 

Case 14. q ~- 181,481,781 (mod 900), f(5) = - 1; 
q -= 61 ,361 ,661 ,121 ,421 ,721  (mod 900), f(5) = 

+1  

2q + 1 A 3q + 1 A 
2q + 2  + 1 B4 3q + 2  + 1 D5 
2q + 3  + 1 D5 3q + 3  + 1 B6 

Case 15. q ~-361 (mod 900), 
[ ( 5 ) =  + 1 ;  q---1 (rood 900), 

f ( 5 )  = - i 

Case 16. q ~-61 (rood 900), 
[(5) = + 1; q ~ 601 (rood 900), 

[ ( 5 )  = - 1 

Case 17. q-=301 (mod 900), 
[(5) = - 1 

12q + 1 A 
7q +1  A 7q +1  A 1 2 q + 3  +1  D15 
7 q + 2  +1 B9 7 q + 3  +1  D10 1 2 q + 2  - 1  C 
7 q + 3  +1 DI0  7 q + 2  - 1  C 6 q + l  +1  [ ( 2 ) =  - 1  

(7q+2) /3  +1  f ( 3 ) = - I  6 q + 3  +1  B9 
(7q +5)/3 +1  B9 6 q + 2  - 1  D10 
(7q - 4)/3 + 1 B9 
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Case 18. q ~- 541 (mod 900), f (5)  = + 1 

8q + 1 A 
8q + 1 + 1 B9 
8q - 2  - 1 C 

(8q - 2)/3 + 1 [ (3 )  = - 1 
(8q + 4)13 + I B12 
(8q + 7)/3 + 1 D15 

Case 19. q ~ 241 (mod 900), f (5)  = + 1 

8q + 1 A 
8q - 2 + 1 B18 
8 q + l  - 1  C 

(8q + 1)/3 + 1 f(3)  = - 1 
(8q + 7)/3 + 1 D15 
(8q + 10)/3 - 1 C 
(8q + 10)/6 + 1 f(2) = - 1 
(8q + 16)/6 + 1 B24 
(8q - 2)/6 + 1 B18 

Case 20. q -= 661 (mod 900), f (5)  = + 1 Case 21. q -= 841 (rood 900), f (5)  = + 1 

7q + 1 A 7q + 1 A 
7q + 3  + 1 B10 7q - 1 + 1 B9 
7q + 2  - 1 C 7q - 3  - 1 C 

(7q + 2)/3 + 1 f(3)  = - 1 (7q - 3)/2 + 1 f(2)  = - 1 

(7q + 8)/3 + 1 D I 5 (7q + 1)/2 + 1 B8 (if q -= 1 (mod 8)) 
(7q + 11)/3 - 1 C (7q + 3 ) / 2  + 1 D10 

(7q + 11)/6 + 1 f(2) = - 1 (7q + 1)/2 - 1 C (if q -= 5 (mod. 8)) 
(7q + 17)/6 + 1 B18 (7q + 1)/4 + 1 f(2)  = - 1 
(7q - 1)/6 + 1 B18 (7q - 7 ) / 4  + 1 D10 

( 7 q -  11)/4 + 1  B8 (if q -=5 (mod8) )  

The cases for which q =- 191 (mod 360) are resolved in Case 22. If q = 731 or 

1091 (mod 1800) a n d / ( 5 )  = - 1 the proof is as in Case 13; if q -= 11 or 371 (mod 

1800) and f(5) = - 1 the proof as in Case 14; if q = 731 or 1451 (mod 1800) and 

f(5) = - 1  the proof is as in Case 14. Cases 23 and 24 complete the proof of 

Theorem 3. 

Case 22. q ~ 191, 551, 911, 1271, 1631 
(rood 1800) 

Case 23. q --- 371, 1091 (mod 1800), f (5)  = 
+ 1; q -= 1451 (mod 1800), f (5)  = - 1 

7q + 1 A 2q + 1 A 

7q - 1 + 1 B8 2q - 1 + 1 B3 
7 q - 3  - I  C 2 q - 3  - 1  C 

(7q - 3)/2 + 1 f(2)  = - 1 4q - 6 + 1 / (2)  = - 1 
(7q - 5)/2 + 1 B18 4q - 8 + 1 B4 

(7q - 9)/2 + 1 B8 4q - 5 - 1 C 
(4q - 5)/3 -4-1 f(3)  = - 1 
(4q + 1)/3 + 1 D5 
(4q + 4)/3 + 1 B12 
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Case 24. q ~ 11 (rood 1800), [(5) = + 1 

2q + 1 A 
2q - 1 + 1 B3 
2q - 3  - 1 C 
6 q - 9  + 1 [(3)= - 1 
6q - 11 + 1 D5 
6q - 8  - 1 C 
3q - 4  +1 /(2)= - 1 
3q - 3 + 1 B3 
3q - 6 + 1 B3 

4. Upper bounds for r4,1(p) and for r4,2(p) 

THEOREM 4. For every prime p >_ 13 we have 

(4.1) r4,1(p) < 203.602pl/41ogp + 51. 

PROOF. Note  that  (4.1) holds trivially for  p < 2 0 0 0 0  as then r4,1(p)<p < 

203,602pVqogp + 51. Assume  now that  p > 20000 and define q as in T h e o r e m  3 

with f taken to be a totally multiplicative funct ion with values coinciding with 

those of the Legendre  symbol  (m/p) for 1 < m < p .  We may clearly assume that 

(2/p) = - 1 as otherwise r 4 , 1 ( p )  = 1. 

For,  if q -  a (mod 5), a = 1,2,3,4, the ( q -  a)/5 integers (rood p), a/5, 
(5 + a ) /5 , .  �9 (q - 5)/5, are consecut ive quadrat ic  residues or  consecutive quad-  

ratic non-residues of p. By T h e o r e m  2 we have q<r4.~(p)+4<p so that 

q - 5 < p. F rom this it follows that  s => (q - c~)/5 or, equivalently,  q =< 5s + c~ =< 

5s + 4 .  

Now Karl Nor ton ,  see, e.g., [14, p. 38], has shown that  s < 2.9086p~/4 logp  for 

all p for  which ( 2 / p ) =  - 1 .  It is easy to see that  

(4.2) 14q - 2 =< 70s + 54 < 70(2p) ~/2 + 194 < p 

if p > 20000 as A.  Brauer  [1] has shown that  s < (2p) "2 + 2 for every pr ime p. 

Finally, appeal ing to the proof  of the theorem in [10], we have f rom (4.2) that  

r4 l(p) = 14q - 5 - 70 s + 51 f rom which T h e o r e m  4 follows at once  for p > 20000 

in view of Nor ton ' s  result and the corol lary following the proof  of T h e o r e m  2. 

THEOREr~ 5. For every prime ~ _ 3 (mod 8) = 11 we have 

(4.3) ra.2(p) < 174.516p 1/4 log p + 48. 

PROOF. As in the p roof  of  T h e o r e m  4 we have q < 5 s + 4  and s <  

2.9086pt/41ogp. Moreover ,  we have 



32 R.H.  HUDSON lsr. J. Math. 

(4.4) 12q+3<=60s+51<60(2pl/2)+171<p if p > 20000, 

and the result is immediate, as before, if p < 20000. Theorem 5 follows, then, 
from the corollary following the proof of Theorem 2 and the inequality 
r4.2(p)<=12q<=60s+48 which follows from the proof of Theorem 3 with 

g(q) = 12q. 
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